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Abstract.  Quiescent double barrier (QDB) conditions often form when an internal

transport barrier is created with high-power neutral-beam injection into a quiescent

H-mode (QH) plasma. These QH-modes offer an attractive, high-performance operating

scenario for burning plasma experiments due to their quasi-stationarity and lack of edge

localized modes (ELMs). Our initial experiments and modeling using ECH/ECCD in

QDB shots were designed to control the current profile and, indeed, we have observed a

strong dependence on the q-profile when EC-power is used inside the core transport

barrier region. While strong electron heating is observed with EC power injection, we

also observe a drop in the other core parameters; ion temperature and rotation, electron

density and impurity concentration. These dynamically changing conditions provide a

rapid evolution of T Te i  profiles accessible with 0.3 < ( ) <T Te i axis 0 8.  observed in

QDB discharges. We are exploring the correlation and effects of observed density profile

changes with respect to these time-dependent variations in the temperature ratio. Thermal



and particle diffusivity calculations over this temperature ratio range indicate a

consistency between the rise in temperature ratio and an increase in transport

corresponding to the observed change in density.



I.  Introduction

High confinement mode (H-mode) operation is a leading scenario for burning plasma

devices [1,2] due to its inherently high energy-confinement characteristics. The quiescent

H-mode (QH-mode) [3,4] potentially offers these same advantages with the additional

attraction of more steady edge conditions where the highly transient power loads due to

edge localized mode (ELM) activity is replaced by the steadier power and particle losses

associated with an edge harmonic oscillation (EHO) [3-5]. With the addition of an

internal transport barrier (ITB), the capability is introduced for independent control of

both the edge conditions and the core confinement region giving possible control of

fusion power production in this advanced-tokamak (AT) configuration. The quiescent

double barrier (QDB) [3-9] conditions explored in DIII-D experiments exhibit these

characteristics and have resulted in steady plasma conditions for several energy

confinement times.

To date, we require particle control using divertor cryopumping along with neutral-

beam injection opposite to the plasma current [counter-neutral beam injection (NBI)] to

achieve QDB-mode operation in DIII-D. We are able to achieve QDB-mode conditions

over a fairly wide range of operating conditions [10] including pedestal stored energy and

collisionality consistent with ITER operational needs. We observe this operation to be

extremely robust and maintain the QH-mode edge conditions where the pedestal region

remains edge localized mode (ELM)-free with particle exhaust due to the presence of the

EHO. We have found that edge stability is consistent with a model based on peeling-

ballooning-mode theory [11]. Recent experiments have explored techniques to expand

the operating parameters and to control the pressure and current density profiles. As

indicated in figure 1, ramping the triangularity, δ, [10,12] increases the operating density

consistent with the predicted effects of strong shaping on stability. Electron cyclotron



heating (ECH) and current drive (ECCD) have resulted in modification of the current and

q profiles consistent with modeling predictions [6,8,9]. In both these triangularity

ramping and ECCD experiments, we have observed a modification density and

temperature profiles.

In the EC injection experiments, figure 2, along with the electron heating we also

observed a reduction in density peaking, impurity content and ion temperature similar to

that observed in other experiments [13]. In recent experiments to enhance the QDB

parameter range [10,12], we used this effect of EC power to control the density profile

while ramping the neutral beam power injection to achieve the βN ~ 3 shown in figure 1.



II.  Internal transport barrier (ITB) in QDB operation

Typically, QH-mode discharges exhibit a propensity for forming a core transport

barrier that, in addition to the edge barrier, results in the QDB conditions. With the

enhanced core confinement due to formation of the transport barrier, injection of

additional NBI power and its fueling in the core can result in pressure profile peaking and

β limits. However, these QDB-mode plasmas remain markedly resilient to changes in

auxiliary heating power [10] where up to 3 MW of EC power plus 15 MW of NBI have

been injected without loss of the desirable, ELM-free pedestal conditions. We find that,

once a threshold in injected power is reached, the edge pedestal conditions remain

constant while the core conditions can rise dramatically with the formation of a core

transport barrier as indicated by the ion temperature and density profiles shown in

figure 3. This saturation in edge conditions, while not currently fully understood, results

in the resilience of QDB discharges to changes in the injected power. Corsica [14]

transport analysis results shown in figure 3 indicate that ion thermal confinement inside

the ITB (ρ  <~  0.6) continues to improve with increased NBI power where χ i continues to

decrease at the higher powers. This indicates that the core ion thermal transport barrier

continues to strengthen with χ i approaching neoclassical, χ i
neo, levels. The core particle

diffusivity, however, remains relatively constant inside the ITB with changing NBI

power indicating that the density peaking is a more a result of good particle confinement

of the beam-injected ions deposited in the core.



III.  EC power affects on density profiles

To evaluate the effects of injecting EC power on confinement, we use a discharge

representative of our standard, �simple� QDB conditions, namely constant NBI power

and no triangularity ramp. Ramping of either NBI power or triangularity also result in

changes to the density and temperature profiles that compete with the effects of EC

power injection. For our transport analysis, we use shot 110874 shown in figure 2. The

effects of EC power on the various profiles is rather dramatic on this shot (but typical of

other shots in these experiments) where Te is observed to rise due to intense electron

heating while ne  and Ti drop precipitously during the EC pulse. For this shot, 2 MW of

EC power is being injected in the counter-ECCD direction (data from a current profile

modification experiment) at ρ = 0 3.  localized over δρ = ± 0 1.  as determined from

TORAY-GA [8,15] ray tracing calculations. In several experiments [8,9], we have

observed that the effects of EC power on these profiles is not strongly dependent on the

antenna aiming, co-ECCD, radial, and counter-ECCD all resulting in similar changes to

the profiles.

Using Corsica, we evaluated the change in transport characteristics resulting during

injection of EC power. We show results of this analysis in figure 4 at 2.5 s just prior to

initiation of ECH, at 2.55 s during the rapid change in confinement, at 2.58 s, 2.61 s and

2.9 s during the more steady conditions with ECH on, and at 4 s after ECH has been

turned off and the plasma has returned to a state similar to that before ECH/ECCD. In

figure 4 we show spline fits to the measured ion temperature profile (from the CER

diagnostic) and the inferred ion density determined by quasi-neutrality from fitting the

measured electron (Thomson scattering) and impurity densities (from CER). The

corresponding ion thermal, χ i, and particle, Di, diffusivities shown in figure 4 indicate

the dramatic change in transport resulting from injecting EC power inside the ITB where



χ i and Di vary by a factor of 10 inside the barrier region, e.g. ρ < 0 5. . Analysis at

ρ > 0 85.  has high uncertainty due to poor information on particle fueling and wall

recycling.



IV.  Consistency with stability models

During the evolution with ECH on, as indicated in figure 2, there is a rapid variation

of the electron (Te) and ion (Ti) temperature profiles with Te rising due to strong electron

heating and Ti falling due to the change in transport characteristics inside the barrier

region. This effectively scans the temperature ratio profile, T T Tei e iρ ρ ρ( ) = ( ) ( ) , figure 5,

in the core over the range of on-axis values 0 35 0 0 75. .< ( ) <Tei . Over this range, there is

expected to be a large variation in the stability to ion temperature gradient (ITG) and/or

trapped electron (TE) modes. To estimate this effect, we compare the temperature scale

lengths to the local stability thresholds given by Weiland [16] where the local ITG

threshold is
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with Γ = f fT P  (ratio of trapped to passing particles), εn the ratio of electron density to

magnetic field scale lengths and LTi the ion temperature gradient scale lengths. The TE

threshold, independent of Tei, is given by
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where LTe is the and electron temperature gradient scale length.

In figure 6, we plot time-averaged local ITG threshold profiles and the ion-

temperature-gradient scale lengths before, during, and after ECH is applied on shot

110874. Before the onset of ECH (and also after its termination, not shown), the core

(ρ < 0 5. ) R LTi  is significantly less that the local stability threshold, consistent with the

fact that core χ χi e
neo~ . However, during the ECH pulse, the threshold for onset of the

ITG mode is comparable to that of the R LTi  which often exceeds this threshold



condition, an indication that the ITG mode is a likely candidate for driving the enhanced

transport during the ECH pulse resulting in the profile modification. In particular, as

shown in figure 6, immediately after the ECH is terminated, the plasma rapidly evolves

back to the peaked ne  and Ti profiles indicated by the rise in parameters in figure 2 after

3.5 s and the profiles in figure 4 and low Tei 0( ) in figure 5 both shown at t = 4 s. The

time variations of the R LTi -profiles shown in figure 6 indicate evolution of R LTi  from

significantly higher than the (average) threshold to well below the threshold after a few

hundred milliseconds as the plasma reverts back to the strong barrier conditions. This is

dominated by the evolution of the ITG threshold over time as indicated in figure 7. In

figure 8, we also show the average TE threshold and the electron temperature gradient

scale length during the ECH pulse. The plot of R LTe  shown is the closest it gets to the

TE threshold indicating that it may be an issue during strong ECH. However, over most

of the plasma evolution for this QDB discharge, LTe remains significantly less than the

TE-mode threshold indicating that the trapped electron mode is not a likely candidate for

causing enhanced transport. Well before and after the ECH and even during the rapid

profile evolution at onset and termination of ECH, the R LTe  remains significantly far

from this threshold. To better identify and quantify the root cause of transport, additional

calculations using codes such as GYRO or GS2 may be required but this is beyond the

scope of this paper.



V. Summary.

Quiescent double barrier discharges represent a potentially attractive mode of

operation for burning plasmas due to their high β, quiescent edge conditions and

potential for discharge control. Additional neutral-beam heating increases the strength of

the ion thermal transport barrier with peaking of the density resulting from the low

particle transport and the good confinement of ions born in the core region. Injecting EC

power into the internal barrier region has been shown to affect the ion confinement

properties and the density and temperature profiles. Both the ion thermal and particle

diffusivities rise considerably during the EC pulse. This change in confinement correlates

with a rise in the electron-to-ion temperature ratio during ECH resulting from both

increased electron heating raising Te and changing transport reducing Ti, consistent with

modification of the ITG stability thresholds. This change in transport has been used to

advantage for controlling the pressure peaking while increasing the neutral-beam heating

to raise the stored energy and obtain βN ~ 3 in recent experiments.
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List of Figure Captions

Fig 1.  Shot 118838:  NBI power ramp while using EC power to control the density rise

and obtain βN ~ 3 and maintain qmin ~ .1 5 in QDB-mode. δ-ramp for higher density

operation is also present. Shot 118821 is a QDB reference shot.

Fig. 2.  Shot 110874 typical of changes in parameters induced by ECH power injection;

110850 is a no-ECH reference. Iimp is the impurity photon emission rate.

Fig. 3. Profiles of electron density and particle diffusivity and ion temperature and

thermal diffusivity during the NBI power scan indicating ITB characteristics of QDB.

Fig. 4.  Ion temperature and density and the resulting thermal diffusivity, χ i, and particle

diffusion, Di, for 110874 indicating change in core transport during ECH.

Fig. 5.  T Te i  ratio during ECH suggesting changes in ITG stability.

Fig. 6.  Time-average ITG thresholds and variations in R LTi  before, during and after

ECH. Before ECH, R LTi  is well below the threshold. During transition in profiles

shortly after ECH is terminated, R LTi  exceeds the threshold while it is close to the

threshold during the steady ECH conditions.

Fig 7.  Changes in the ITG threshold dominate ECH evolution.

Fig. 8.  Time-average TE threshold and R LTe  during ECH pulse. Over most of this

discharge, electron gradient scale length remains far from the threshold.
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